
The DVSwitch Analog_Reflector and DVSwitch HTML Client (hUC)
Document Version 0.12

● Introduction
○ Welcome to the DVSwitch Analog_Reflector and HTML client. This new

component in the DVSwitch suite of applications is a significant step forward as it
adds new ways to combine existing components and adds a new client to the
suite. The app serves multiple use cases being a reflector (or room if you are a
YSF fan), a proxy of the hUC web application and a bridge which preserves
metadata between dissimilar networks. It supports multiple clients at the same
time and allows you to share your DVSwitch Server with other hams. If you do
allow others to access your DVSwitch Server, you must understand this is a
single resource. All users can receive, transmit and tune a SINGLE reflector. This
is not multi-user where each user gets their own instance.

○ Features
■ Analog_Reflector is the server component for the hUC HTML client.
■ A Reflector for hUC and DVSM/pyUC clients
■ A Bridge for Analog_Bridge and AllStar sources

○ How it all fits together. Analog_Reflector is now used as the single point of
connection for all analog (PCM) audio sources. It supports a packet protocol
called USRP (see here) which encapsulates audio and signaling information.

○ There is a lot here. So, sit back and take a deep breath. Start with a minimal
install and grow it over time to add connection types and capabilities. We see
two main types of users of the app, those who are looking for a way of accessing
a digital/analog network from the web (or mobile), and those who are looking to
add a more versatile bridge to their toolbox. Of course, there will be those of you
who want both of these as well.

● Analog_Reflector (the server)

1

https://raw.githubusercontent.com/DVSwitch/Asterisk/master/asterisk/channels/chan_usrp.h

○ Quick Start - (as root)
■ apt update
■ apt upgrade
■ apt install analog-reflector
■ cd /opt/Analog_Reflector
■ cd ssl
■ ./mkcerts.sh
■ Once mkcert completes, you have a self signed certificate for your host.
■ cd /opt/Analog_Reflector
■ Run AR in the foreground
■ ./Analog_Reflector -f Analog_Reflector.json
■ If you see no bad words:
■ point your browser at the server https://192.168.x.y
■ Enter your callsign

○ A little more detail.
■ Now that you see it running, stop Analog_Reflector by pressing Control C
■ Edit Analog_Reflector.json with the bare minimum to get going

● dmrID, abAddress, usrpTxPort, usrpRxPort and mobilePort
○ Directory structure

■ The Analog_Reflector application is located in /opt/Analog_Reflector. The
executable and configuration file Analog_Reflector.json are located in that
directory and other support files are located below.

■

2

https://192.168.x.y/

■ arRoot contains two subdirectories; modes and users. The modes
directory contains one file per mode. Each file contains a list of display
names and talk groups. Edit this file to add your own favorite places. The
users directory contains one file for each registered user. When a user
logs into the reflector values from their user.json will be used to
authenticate and grant rights as needed. To add a new user you should
use the Analog_Reflector “user” command (see below).

■ The ssl directory contains the files needed to create a secure connection
between the server and hUC clients. The script mkcerts.sh in the ssl
directory is used to create new self signed certificates (see below).

○ Configuration
■ Analog_Reflector uses a json file to configure the operation of the

reflector. The json file (Analog_Reflector.json) contains all of the
information needed to connect to an instance of Analog_Bridge and any
other bridges that you may want.

■ A quick discussion about how Analog_Reflector, Analog_Bridge and
clients should be configured

● Analog_Reflector is a new component and as such will often be
added to an existing installation. The job that used to be
addressed by Analog_Bridge, servicing analog clients, has been
handed off to Analog_Reflector. Because of this change, clients
that used to connect to Analog_Bridge will now connect to
Analog_Reflector. For DVSwitch Mobile (DVSM), make sure that
you point the RXPort and TXPort to the “mobilePort” defined in
Analog_Reflector.json. This means that all mobile clients will
communicate directly with Analog_Reflector (and no longer to
Analog_Bridge). Then, You will configure Analog_Reflector and
Analog_Bridge to communicate with each other by adjusting the
usrpTxPort/usrpRxPort of Analog_Reflector to point at [USRP]
RXPort/TXPort of Analog_Bridge (and vice versa). A picture is
better than anything else at explaining the relationship between
the components.

So, in your mobile clients (DVSM and pyUC) set the Port to
12345. For DVSM this is found in the current account. In

3

Analog_Reflector.json set mobilePort to 12345 and usrpTxPort
and usrpRxPort to 31001. In Analog_Bridge.ini set the [USRP]
section rxPort and txPort to 31001. That's it!

■ Analog_Reflector.json
● nodeName - A human readable name for your reflector. This

name is used on the Manage screen of the hUC client as well as
part of the mqtt topic “scheme”. MQTT is discussed here.

● dmrID - The default DMR ID used if no other metadata can be
found

● abAddress - IP Address or FQDN of the Analog_Bridge instance
which is being controlled

● usrpTxPort - Transmit data to Analog_Bridge on this port. In order
to run Analog_Reflector without an instance of Analog_Bridge, set
the usrpTxPort to zero. You would not need Analog_Bridge if you
are setting up a stand alone AllStar client or if you did not want
your digital bridge to be steerable (bridge mode).

● usrpRxPort - Receive data from Analog_Bridge on this port
● mobilePort - Port to listen for DVSM/pyUC client connections
● wsPort - TCP port to listen for hUC (websocket) connections. By

default this is set to port 443 which is the well known port for
HTTPS traffic. If you define a different port, make sure to adjust
the URL you use in the browser to this port number. For example,
if you set this port to 8090, you would have a url like
https://mydomain.net:8090

● keyDir - Location of the certificate files. See here for more on
what goes in the directory.

● siteroot - Base directory for the HTML server. No access to files
outside this directory will be allowed for any HTML client. Your
mode and user json files will live below this root directory.

● logFileName - Your log file name and location
● logLevel - Log levels 1-6 (DEBUG - FATAL)
● disallowUnknownClients - Do not allow unknown clients to

connect. If this is “true”, any unknown client connection will be
sent a disconnect command.

● brokerURL - MQTT broker URL. See here
● rightsMask - A rights value applied to any bridge that does not

have an explicit rights defined. Default is TRANSMIT and MUTE
(5).

4

● autoMute - Defines if the reflector will automatically mute analog
and digital bridges when a mode change happens. In order to
prevent inadvertent spamming of networks, we have implemented
an autoMute rule in the reflector. This rule will mute all digital
bridges when an analog mode is selected and mute all analog
bridges when a digital mode is selected. This ensures that traffic
from these bridges do not leak into a network that may not want it.
You can turn off this rule (PLEASE BE CAREFUL) by setting the
autoMute flag to false. This should only be done by static bridges
where all bridge endpoints agree to the bridge traffic. At reflector
startup, if autoMute is true any analog bridges will be muted.

● clientDebugMode - turn this on to see Analog_Reflector log traffic
in the hUC client. DVSwitch developers may request you do this
to help us debug your setup.

● clientModes - an array of allowed client modes for the hUC client.
These modes will populate the modes menu on the main hUC
screen. Remove any mode from the array that you do not want to
appear. If you do not have an Analog_Bridge instance defined
(usrpTxPort = 0), the first entry in this array will be the client
startup mode. Any mode that has a vertical bar separating its
value will be interpreted as having a display name | mode name.
This is useful for having a human readable mode name and a
easly parsed mode identifier.

● bridges
○ May have multiple Allstar and Digital (Analog_Bridge)

bridges
○ All metadata is preserved across the reflector
○ The first AllStar node is special (it is “controlled”)
○ asl

■ node - Your public node number
■ address - IP Address of your AllStar node
■ rxPort - Port to listen for USRP packets
■ txPort - Port to send USRP packets
■ rights - Standard ACL rights
■ amiUserName - See manager.conf
■ amiSecret - See manager.conf
■ amiPort - See manager.conf

○ ab

5

■ name - Your bridge name
■ address - The IP address/FQDN of your

Analog_Bridge instance
■ rxPort - Port to listen for USRP packets
■ txPort - Port to send USRP packets

● If you are adding Analog_Reflector to an existing DVSwitch Server
installation You will want to either set the mobilePort to either a
unique port (and then expose this new port outside your firewall)
or edit your Analog_Bridge.ini file to have a new rxPort/txPort and
let Analog_Reflector become your new external port on the port
that used to belong to Analog_Bridge.

■ Certificates
● All modern browsers require a secure connection between the

server and the client application before they will allow streaming
audio and metadata to be passed. Secure connections need a
certificate to manage the private data.

● There are two methods to create/use certificates
○ We provide a script “mkcerts.sh” which is located in the ssl

directory. This script will create a self signed certificate for
your site. Self signed certificates are limiting but good
enough for most of what we want to do here. The script:

■ Creates a self signed certificate for your site
■ The certificate will find your public IP address and

fill in the name, IP, country, state
■ 3 files are created: key, certificate and authority

○ Using a certificate from an authority. If you are looking for
a better experience, you can use a certificate that has
been verified by an authority. If you already have one, they
can be used or if you do not, you can get one from a
variety of sources (for free)

■ https://letsencrypt.org/
■ Once you have the certificate files, you must place

them in the ssl directory with the correct file names:
● dvswitch.crt - The certificate file
● dvswitch-ca.crt - The certificate authority
● dvswitch.key - Your private key file

■ If you already have these files from another SSL
web server, you can symlink to these names so that
as they get updated by your automation scripts,
your Analog_Reflector files are updated too.

○ Special considerations for iOS devices
■ If you see this message:

6

https://letsencrypt.org/

■ iOS requires the certificate authority be imported if
using a self signed certificate

■ When in the hUC client on Safari
● Download the root certificate
● The iOS device will inform you that the

certificate must be reviewed.
● Goto iOS Settings -> General -> Profile and

install the root certificate
● Goto Settings -> General -> About ->

Certificate Trust Settings -> turn on the
certificate

■ Users
● Creating a new user is done by using the Analog_Reflector

application with the “user” command line argument. You will need
several pieces of information before you create a new user.

○ Callsign used to login to Analog_Reflector
○ dmrID
○ rptID
○ Password (case sensitive)
○ rights
○ Rights are bits in a word where

■ 1 = Allow Transmit
■ 2 = Allow Tune
■ 4 = Mute
■ 8 = SYSOP

○ For example, most normal users will need to transmit and
tune. Set the user rights to 3 (1+2). Your other two most
common values will be to allow transmit without tune (1)
and to become a SYSOP, (11).

○ A file in the arRoot/users directory will be created with the
filename callsign.json

7

○ Example:
○ ./Analog_Reflector user KC4DEA 1234567 123456789

secret 3
● Editing an existing user

○ Edit the callsign.json file in arRoot/users Note: you can not
edit the password.

○ If the user is logged in, kick them from the manage tab of
the HTML client.

● N0CALL
○ The user N0CALL (N zero CALL) is shipped by default

with Analog_Reflector. This user has receive only rights
and can be used to allow non-hams or other
unauthenticated users to access your server. The hUC app
will make it easy to use this by providing the default login
dialogs with the username and password already filled in.

■ Editing the modes menu
● Analog_Reflector allows you to maintain a set of mode specific

favorite talk groups and/or macros. Each mode is displayed in the
talk group list of the client application when that mode is activated.
You should edit the mode list (with your favorite editor) to
customize the client's favorite items to your tastes.

● Mode json file name construction
○ Each mode menu file name is constructed by combining

the mode name (DMR, YSF, P25, etc) and _node.list.json.
All 5 digital modes and AllStar menus are shipped with the
reflector.

● Mode menu items
○ tgs is an array of display names and tune strings
○ You may have as many items as you want
○ Each item is composed of

■ disp - The text to display in the menu
■ tg - The string to send to AB when “connected”

● Macro buttons
○ Each mode can also display a set of “macro” buttons on

the hUC screen. A macro is just a convenient way of
showing a command or talk group you would like to
access. Most common usage would be network selection
commands.

○ Macros are set up by creating an array (called macros)
which contain a list of disp and tg items. These are
formatted just like the “tgs” items.

● UI customization
○ All modes are not created equal, some have slots and IDs

while others use callsigns and reflectors. The ui object in

8

the mode json file will allow you some limited
customization. There are three areas that may be
customized: the mode information, the quick access or
favorites list and one of the log column headings. We have
created a default set of settings that match each mode, but
you are free to customize as you want.

○ Object structure
"ui": {

"mode": {
"public_id": "",
"public_id_value": "",
"station_id": "",
"station_id_value": ""

},
"quick_access": {

"title": "",
"slot_visible": false,
"list_label": "",
"adhoc_label": ""

},
"log": {

"dest_heading": ""
}

}
○ mode - will allow you to set the label and value for the

public_id and the station_id. To get proper runtime values
into the two value fields, you may access the values in the
current_user object. The fields correspond to the names in
the user.json object.

○ quick _access - changes the presentation of the favorites
list (populated by the tgs array in this same file). You may
change the list area title, whether the slot information will
be visible, the quick label for the list and the menu button
for adhoc tune command strings.

○ log - The destination heading for the log list may be
changed with this value.

○ Analog_Reflector Execution
■ Foreground command line

● Analog_Reflector {-f file} {-l level} {-d} {-cmd command} {user
callsign subscriberID rptID password acl}

○ -f file Defines the json configuration file to use. Default is
./Analog_Reflector.json

○ -l level Defines the log level override. Normally,
Analog_Reflector uses the logLevel in the configuration

9

json file. This option overrides that setting. It is useful for
debugging the reflector in the foreground and not having to
edit the json file to see additional log information.

○ -d Turns on log export to web clients. Use this when
instructed by developers. A new log button will appear on
any hUC client connected to the reflector. Each log line
will be sent to the hUC client. This is useful for remote
debugging of the Analog_Reflector.

○ user Will create a new user profile in the arRoot/users
directory. See here for more information.

○ -cmd Will cause this instance of Analog_Reflector to
send a MQTT command to another running instance. It
will then wait for the response and send it to stdout. Use
this to query or command the reflector and gather the
results. If the command takes an argument, quote the pair
of values. See here for more information. This command
line mode was added to allow developers to script the
reflector by sending it commands and getting results that
can be acted upon.

● If you see the error message:
Another instance of Analog_Reflector is running in the
background.
Then, use the systemctl command below to stop the background
process.

■ System unit
● Use systemctl {start | stop | restart} analog_reflector

○ MQTT API
■ Analog_Reflector has the ability to use MQTT for both command and

control and for logging. MQTT is a very easy to use messaging system
and there are many different clients you can use to interact with the data.
To get more information on MQTT, you could start your investigations
here: https://mqtt.org/ and here: https://en.wikipedia.org/wiki/MQTT

■ During development I used a free broker on the web. Point your
Analog_Reflector brokerURL at mqtt://broker.hivemq.com and then you
can use a web based app at
http://www.hivemq.com/demos/websocket-client/ . Just hit the connect
button, Add New Topic Subscription of dvswitch/# (or to be more exact
dvswitch/YOUR_REFLECTOR_NAME/#) and watch the data flow. You
can send yourself a text message by changing the publish “topic” to
dvswitch/YOUR_NODE_NAME/Analog_Reflector/text and type your
message into the “message” window. Select publish and watch your hUC
client display the message.

■ Basic scheme is dvswitch/${nodeName}/Analog_Reflector
■ Topics

10

https://mqtt.org/
https://en.wikipedia.org/wiki/MQTT
http://www.hivemq.com/demos/websocket-client/

● scheme/text - Send text message to all connected clients
● scheme/command - Execute a command on the server

○ tune tg
○ kick callsign
○ kickAll
○ getAllConnectionIds
○ getAllConnectionObjects
○ getClient clientID
○ authenticate
○ getConfig
○ getReflectorVersion
○ changeLogLevel newLevel
○ refreshAllClients
○ banConnection
○ modifyConnection connectionID rights
○ getConnectedNodes
○ Text message
○ exitReflector

● scheme/log - The server publishes all log messages to this topic
● hUC HTML client

○ Included and built into the Analog_Reflector is the hUC client application (HTML
USRP Client). They come as a single package so installation is simple. The
client requires no install on any computer you execute it on, just a compatible
browser. Most any modern browser will do. iOS is a little special (thanks Apple)
and you should probably stick to Safari even though I see that in the latest iOS
14 releases Chrome and other third party browsers are (now) working.

11

■
○ The URL

■ When accessing Analog_Reflector please pay special attention to the
URL you type in. It must include both HTTPS and a port number unless
you are using port 443). The reflector will do an automatic redirect for you
to the full path to the hUC app, so you can just type in: https://fqdn:port.

○ Logging in
■ The first time you visit the reflector it will ask you to log in. You should

have ready your callsign and password for access to the reflector.
Because this app will probably be available to you on the open web, we
do not want to allow unlicensed people to transmit on the ham bands.

12

Users must be granted rights by the system administrator for transmit and
tune.

■ If the user has been granted rights on the system, they should log in with
their callsign and password.

■ If the user does not have an entry in the access list (ACL) they can log in
with their call sign and will be granted receive only rights. They will not be
asked for a password as they can only listen to the communications
present on the server. This type of access will only be available if the
disallowUnknownClients flag is set to false.

■ We ship the server with a special call N0CALL (and a password of
“passw0rd”). This combination is also used to grant read only access to
the server.

○ Running the app

■
■ hUC a single page application divided into a top tabbed interface and a

bottom list view. The top tabs, Main, Settings, Support, About and
Manage will allow you to work with different aspects of the UI while the
bottom list view is visible regardless of the top tab selected. The bottom
list view has several different presentations as well, Log, Nodes and Text.

○ Main
■ Audio button enables both receive and transmit audio in the browser.

You must interact with this button before you will hear any audio from the
reflector. Turn on audio to both listen and access your microphone. If
there is audio playing and you have not turned on the speaker, you will be
reminded to do this. Because of the rules browsers have surrounding

13

auto-play of audio content, I can not turn on audio access automatically,
the user must interact with the page to do so.

■ Mode Selection is done by using this pull-down menu. The mode and TG
menu control the main instance of the attached Analog_Bridge (if there is
one). The modes presented are controlled by Analog_Reflector (see
here)

■ Talkgroup Selection is done by selecting the list item and then pressing
connect (or double clicking on the item). To disconnect from the last
connection, press the “Disconnect” button. Note that Mode and TG
selection may be disabled if the user does not have rights to tune. The
TG, Connect, Disconnect and Mode pull down menu will be shadowed.

■ While a transmission is in progress the QRZ picture, mode, call, name
and DMR ID is displayed. You can click on the QRZ picture to visit the
station's website.

■ Ad-Hoc talkgroups and menus
● You may enter your own talk group number by selecting the “TG”

button. This will bring up a popup where you can enter a free
format string or select from a menu of commands on the pull down
menu. The menu is populated only when DVSwitch Server is in
the “advanced mode”.

○ Last Heard List
■ The Last Heard list has several views available. Log (or last heard) is the

stations heard from any bridge or client connected to the reflector. Right
click or long press on a log entry to get more information about the
station. The Nodes view is populated when using the AllStar mode. It
shows the nodes connected to your main node. Text is used to show a
running list of text messages sent to your client from the server or any
other client.

■ Mode specific macro buttons can also appear just above the Last Heard
list. These buttons will appear with a gear icon and are configured in
the json file specific to the current mode.

■ Status bar
● Connected to shows the current talk group/reflector/room/node

you are connected to. If the text is truncated because of space,
just hover over the item to reveal more information.

● If the Analog_Reflector server goes offline, the “Connected to” will
change to “Server offline” to indicate the new status. hUC will
attempt to reconnect by itself when this happens.

● Your call sign is displayed in the center of the status bar while in
idle state. When a station is transmitting the item shows who is
transmitting and the destination.

● Current time is displayed in the bottom right hand corner of the
status bar.

○ Settings

14

■
■ General

● Keep Screen On - Some browsers support this option to keep the
screen from timing out and locking. This is of course a battery
drain on mobile devices.

● Fullscreen - Some browsers allow for going full screen and
removing surrounding chrome

■ Receive
● Rodger Beep - Enables/Disables the audible beep at the end of a

transmission.
● Lowpass Filter - controls the inclusion of a low pass filter in the

audio path. This is used to remove any high frequency
components that may be the result of upsampling of the audio on
some devices (thanks Apple). The cutoff frequency is defined by
the Frequency slider. Move it to the right to allow higher cutoff
frequencies, and to the left to restrict the audio content. Unless
you are on an iPhone, you probably will not need the filter to be
enabled as sample rate conversion is not needed (and there is no
audio aliasing taking place).

■ Transmit
● Timeout - The transmit timeout timer in seconds. When a timeout

occurs the user will hear an audible beep and be transitioned to
receive.

● Mic Gain - As usual each device and hardware combination
produces a different audio level on transmit. This is a client side
adjustment, so don’t forget that you also have audio level settings

15

in Analog_Bridge that can be used. The DVS advanced macros
have the ability to adjust audio levels based on the mode selected.
Use the parrot function to listen to your audio to make sure it is in
line with others on that specific mode.

■ The devices listed are for display only and can NOT be selected to
change your input or output devices. This will be a future addition to the
hUC application, but for now it was deemed valuable to show the user
what devices are available to the client app.

■ Download hUC Root SSL Certificate - iOS is a “special” player. Apple will
not allow self signed certificates to create secure connections without
installing a root certificate on the device. Refer to this section in this
document covering configuration to learn how to install this certificate and
enable it for use.

■ Client settings are stored in cookies on the browser. They are not stored
on the server so that you may have different settings on each of your
devices. For example, you may want different mic gain settings on your
phone and your desktop.

○ Manage

■
■ The Manage tab will allow the SYSOP to change the access rights of any

active client, kick a client off of the reflector and to send “text messages”
to all other users.

● Bridging with Analog_Reflector
○ AllStar

■ Features
● Fully node agile (dial and command your node)
● Get limited node metadata
● Text messages sent to the node from the digital side metadata

16

■ Configuration
● On the AllStar node

○ Configuring USRP
■ Enable the USRP channel driver
■ If adding to an existing node, create a private node
■ Otherwise, configure the main node section

○ Enable the Management interface
■ Analog_Reflector uses the Asterisk Management

Interface (AMI) to send commands to your node
and to get events back from the node.

■ In manager.conf
● Make sure the manager interface is

enabled.
● Set the AMI user name as the section

name. For example [admin].
● Set the secret in the section

● On Analog_Reflector
○ Edit the Analog_Reflector.json file and create an AllStar

(asl) entry in bridges with the node number, address,
rxPort, txPort, rights, amiUserName and amiSecret. For
example (BUT use your own node info)
"asl":
[

{
"node": "41263",
"address": "192.168.1.88",
"rxPort": "34001",
"txPort": "32001",
"rights": 1,
"amiUserName": "admin",
"amiSecret": "secret"

}
]

■ Usage
○ Analog_Bridge based bridges

■ Setting up a bridge
■ LOTS OF TEXT GOES HERE
■ Configuring your Analog_Bridge.ini file

● In the [USRP] section edit the Address, RXPort and TXPort values
to point at the corresponding values in the Analog_Reflector
configuration file. Remember RXPort in AB points to usrpTxPort
in the AR json file and TXPort in AB points to usrpRxPort in the
AR file.

■ Configuring your Analog_Reflector json file

17

● Analog_Reflector supports several digital bridges at the same
time. To create a new bridge, add an entry to the “ab” array with
the fields name, address, rxPort, txPort and rights defined. Just
like the discussion above, make sure your rx ports point at
Analog_Bridge tx ports and vice versa. Make sure you do not
have any port conflicts with any other instances of AR or AB. Use
the command ./dvswitch.sh getUDPPortsForProcess ALL to
get the ports used by all DVSwitch applications running on your
server.

○ Automatic Mute between Analog (AllStar) and Digital networks
■ In order to make sure that a user does not bridge analog and digital

networks together without knowing it, the reflector will automatically mute
the mode which is not in use to ensure no traffic is passed without their
knowledge. For example, if the user selects the ASL mode from the hUC
client, all digital networks (the controlled Analog_Bridge instance and any
bridge) will be muted. And, when the user switches back to a digital
mode (i.e. DMR) the AllStar connection will be muted.

● Troubleshooting (server and client issues)
○ Error, configuration json "XXX" not found

■ When running Analog_Reflector you can use the -f config_name to
specify a configuration json file to use. If the argument is not specified the
reflector will use Analog_Reflector.json in the current working directory.
You may specify a full path name to the json file you want to use.

○ Fatal error, SSL key and cert files were not found
■ Please make sure your keyDir is correct and that the files dvswitch.crt,

dvswitch.key and dvswitch-ca.crt are in the directory.
○ Passwords with special characters

■ When you create the password you may want to single quote the whole
value in case the user has selected a password which contains special
characters (like !). The Linux Bash shell interprets these characters
before they get to the app, so quoting them causes the shell to leave
them alone.

○ Its json!
■ If you are not used to the format, use an editor that checks your syntax as

you type. If you do not do that, use an online json validator to check the
files for errors. Even a simple editor like nano can be used to edit json.
We suggest you backup the file before editing. Pay attention to the
formatting of the file. Every comma, quote, colon, etc are needed.
Note: json does not support comments in the file.

○ 404 from server
■ If the reflector is running make sure that the siteRoot in the reflector json

file is correct and your URL is also correct. Note that this is a HTTPS
connection and that you may also need to specify a port. For example
https://my_domain.org:8090/bla/bla/bla

18

○ Failed to capture microphone
■ This error can be due to several causes. Make sure you have mic access

enabled in your browser.
○ On an iPhone you can not authenticate.

■ Please be aware that passwords are case sensitive. On an iPhone, you
may have “auto capitalization” turned on, which would cause the
password to not match.

● Misc
○ There are two modes on the modes menu you may not be familiar with;

■ STFU (Simple Terminal Functional Update) and Intercom. STFU is used
to access the Brandmeister DMR network. It uses their preferred access
protocol (Open DMR Terminal Protocol). It does have several advantages
over the MMDVM/Homebrew protocol including the ability to subscribe
and leave a talkgroup without waiting for a station to finish talking. Also,
you can subscribe to a talkgroup without having to transmit. For now,
DVSwitch is offering the STFU client as a stand alone component as
other DMR networks are not supporting this protocol, so both need to be
accessible. Configuration of the STFU mode is done in the DVSwitch.ini
file using the [STFU] section. Please note, we have experienced that
some BM servers may not be configured correctly for this protocol, if
yours is one of these, please contact BM for support.

■ Intercom is used to facilitate communication between Analog_Reflector
users without transmitting over any ham radio network. It mutes any
bridge (digital or analog) and the steerable AB instance. All users
connected to the reflector are included in the conversation while in this
mode.

○ logrotate is used to archive the old log file. Once the log file has been rotated,
logrotate wll send Analog_Reflector a SIGHUP signal which will begin the new
log file session. By default, the log files are placed in /var/log/dvswitch.

○ Server restart. Upon exiting the server, all connected clients will be sent an
unregister command. DVSM and hUC will attempt to reconnect to the server if
instructed, so upon server restart, they should log back in.

○ The server does some simple certificate validation when starting up. It checks for
the server IP and hostname/FQDN in the certificate. This ensures that the
certificate being used is proper for the operation of the server and that clients will
accept it for this ip address.

○ Bluetooth is “supported” so far as both speaker and mic can be routed through
the default audio device on your computer/phone. However PTT has not been
enabled for BLE or BT Serial type microphones so you have to use the on screen
Transmit button.

○ The hUC client does support ad-hoc menus just like DVSM and pyUC. When an
ad-hoc menu is loaded, it can be accessed from the “TG” button and then use
the pulldown in the modal dialog to access the menu items.

19

○ The Analog_Reflector can be accessed from outside your firewall. In addition to
the UDP port you would forward for DVSM access (just like you did for
Analog_Bridge), you should also port forward the TCP port you defined for
wsPort in your Analog_Reflector.json configuration file.

○ Mobile operation of the hUC application can be challenging The hUC application
is not a “responsive” mobile application. It was not intended to be. At some point
we may decide to implement different UI views, but not at this time. Also, many
platforms may try to optimize battery usage when the web browser is not the
foreground app or the screen is turned off. I have found Apple to perform well in
both these situations, some android phones do OK, and Fire tablets are too
aggressive on battery optimization. As a browser application we are at the mercy
of each vendor to implement their platform as they see fit.

○ If you see NoNet on the status bar of the hUC application that means
Analog_Reflector is not communicating with an instance of Analog_Bridge. The
NoNet is there to say that there is no known digital network or talk group since
there is no connection to a digital network. Analog_Bridge is not required for
operation of Analog_Reflector. It provides a steerable link, but many bridge
operators may not require (or in fact want) users to be able to select a new digital
location. So, the reflector operates in a stand alone mode when this occurs. If
you see this connection status and expect to be accessing Analog_Bridge, then
your usrp ports are probably not configured correctly (or Analog_Bridge is not
running).

20

